Rational solutions of integrable nonlinear wave models

Antonio Degasperis
Department of Physics, Sapienza University of Rome, Italy

International Workshop on Integrable Systems Mathematical Analysis and Scientific Computing Taipei, October 17-21, 2015

HISTORY 1

LINEAR differential equations with constant coefficients do not have rational solutions
(1977-78) Adler, Airault, McKean, Moser, Ablowitz, Newell, Satsuma Korteweg-deVries equation $u_{t}+u_{x x x}-6 u u_{x}=0$

$$
u_{n}(x, t)=-2 \partial_{x}^{2} \log \left(P_{n}(x, t)\right), \quad n \geq 0
$$

Adler-Moser polynomials: $P_{0}=1, P_{1}=x, P_{2}=x^{3}+12 t, \ldots$

$$
u_{0}=0, u_{1}=\frac{2}{x^{2}}, u_{2}=6 x \frac{x^{3}-24 t}{\left(x^{3}+12 t\right)^{2}}, \ldots
$$

Boussinesq equation $\quad u_{t t} \pm u_{x x x x}+\left(u^{2}\right)_{x x}=0$ motion of poles as many-body system

HISTORY 2

connection to Painleve' II and IV : (1959-1965) Yablonskii-Vorob'ev polynomials, (1999) Noumi, Yamada (generalized Hermite polynomials and generalized Okamoto polynomials)
$+++++++++++++++++++++++++++++++++++$ defocusing Nonlinear Schroedinger equation $i u_{t}+u_{x x}-2|u|^{2} u=0$ (1985) Nakamura, Hirota, (1996) Hone, (2006) Clarkson

$$
u_{n}=\frac{g_{n}}{f_{n}}, \quad n \geq 0
$$

$++++++++++++++++++++++++++++++++++++$ focusing Nonlinear Schroedinger equation $i u_{t}+u_{x x}+2|u|^{2} u=0$ (1983) Peregrine, (2010) Clarkson, Matveev

$$
\begin{gathered}
u_{n}=\frac{G_{n}}{F_{n}} e^{2 i t}, n \geq 0 \\
G_{0}=1, F_{0}=1, G_{1}=4 x^{2}+16 t^{2}-4 i t-3, F_{1}=4 x^{2}+16 t^{2}+1, \ldots
\end{gathered}
$$

PEREGRINE LUMP

rational soliton as ratio of polynomials of degree 2

Figure: background amplitude=1, peak amplitude $=3$

HISTORY 3

" The finite density boundary conditions have meaningful applications only when $\chi>0$, hence we shall confine ourselves to this case. " L. Faddeev and L. Takhtajan Hamiltonians Methods in the Theory of Solitons, Springer (1986)
recent extensions to other integrable models such as:

- vector nonlinear Schroedinger equations
- Hirota equation and coupled Hirota equations
- three wave resonant interaction model
- Massive Thirring Model
- discrete NLS equation
- several others

GENERAL OBSERVATIONS

- making a limit :

$$
M(z)=\sum_{j=1}^{N+1} \gamma_{j} e^{k_{j} z} \rightarrow e^{k_{c} z} P_{(N)}(z)=e^{k_{c} z} \sum_{j=0}^{N} c_{j} z^{j}, k_{j} \rightarrow k_{c}
$$

- computing the critical value k_{c}

Example : KdV for Adler-Moser polynomials, $k_{c}=0$
Example : NLS for Peregrine and higher order, $k_{c}= \pm i$

NLS equation

Figure: $S_{x}=$ x-part continuum spectrum $/ S_{t}=\mathrm{t}$-part continuum spectrum

computing $k_{c} 1$

preliminary note on Jordan forms : $M=T M^{(J)} T^{-1}$

$$
M^{(J)}=\left\{n_{j} x n_{j} \text { blocks }\right\}=\left\{m_{j} \Im_{n_{j} x n_{j}}+\mu_{j} \mathfrak{J}_{n_{j} \times n_{j}}\right\}
$$

$\Im_{n_{j} \times n_{j}}$ is the $n_{j} x n_{j}$ unit matrix and $\mathfrak{J}_{n_{j} \times n_{j}}=\left(\begin{array}{ccccc}0 & 1 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & 1 \\ 0 & \cdots & \cdots & \cdots & 0\end{array}\right)$
n_{j} is the algebraic multiplicity of the eigenvalue m_{j} and $\mathfrak{J}_{n_{j} \times n_{j}}^{n_{j}}=0$ if $N^{n} \neq 0$ and $N^{n+1}=0$ then $e^{z N}=P_{n}(z)$

$$
e^{z M}=T\left\{e^{z m_{j}} P_{n_{j}-1}(z)\right\} T^{-1}
$$

necessary condition for $\mu_{j} \neq 0$ is $n_{j}>1$

example : NLS equation

$$
\begin{gathered}
u_{t}=i\left[u_{x x}-2 s|u|^{2}\right], \quad \Psi_{x}=X \Psi \quad, \quad \Psi_{t}=T \Psi, s= \pm 1 \\
u_{0}(x, t)=a e^{-i s a^{2} t}, \quad \Psi_{0}(x, t, k)=G(x, t) e^{i(\Lambda(k) x-\Omega(k) t)}
\end{gathered}
$$

DEFINITION : k_{c} is a critical value of k if $\Lambda\left(k_{c}\right)$ is similar to a Jordan form Λ_{J} :

$$
\Lambda\left(k_{c}\right)=T \wedge_{J} T^{-1}
$$

$$
\Lambda(k)=\left(\begin{array}{cc}
k & -i s a \\
-i a & -k
\end{array}\right), \quad \lambda_{1}=\sqrt{k^{2}-s a^{2}}, \quad \lambda_{2}=-\sqrt{k^{2}-s a^{2}}
$$

$$
\text { for } s=1, k_{c}= \pm a, \text { for } s=-1, k_{c}= \pm i a, \Lambda^{2}\left(k_{c}\right)=0
$$

$$
e^{i \Lambda\left(k_{c}\right) x}=1+i \Lambda\left(k_{c}\right) x
$$

study case : vector NLS equation 1)

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
u_{t}^{(1)}=i\left[u_{x x}^{(1)}-2\left(s_{1}\left|u^{(1)}\right|^{2}+s_{2}\left|u^{(2)}\right|^{2}\right) u^{(1)}\right] \\
u_{t}^{(2)}=i\left[u_{x x}^{(2)}-2\left(s_{1}\left|u^{(1)}\right|^{2}+s_{2}\left|u^{(2)}\right|^{2}\right) u^{(2)}\right]
\end{array}\right. \\
\Psi_{x}=X \Psi \quad, \quad \Psi_{t}=T \Psi
\end{array}\right\} \begin{gathered}
\sigma(x, t, k)=i k \sigma+Q(x, t) \quad, \quad T=2 i k^{2} \sigma+2 k Q+i \sigma\left(Q^{2}-Q_{x}\right) \\
\sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), Q=\left(\begin{array}{ccc}
0 & s_{1} u^{(1) *} & s_{2} u^{(2) *} \\
u^{(1)} & 0 & 0 \\
u^{(2)} & 0 & 0
\end{array}\right)
\end{gathered}
$$

study case : vector NLS equation 2)

$$
\begin{gathered}
\Psi(x, t, k)=\left[\mathbf{1}+\left(\frac{\chi-\chi^{*}}{k-\chi}\right) P(x, t)\right] \Psi_{0}(x, t, k) \\
\binom{u^{(1)}(x, t)}{u^{(2)}(x, t)}=\binom{u_{0}^{(1)}(x, t)}{u_{0}^{(2)}(x, t)}+\frac{2 i\left(\chi-\chi^{*}\right) \zeta^{*}}{|\zeta|^{2}-s_{1}\left|z_{1}\right|^{2}-s_{2}\left|z_{2}\right|^{2}}\binom{z_{1}}{z_{2}} \\
P(x, t)=\frac{Z Z^{\dagger}}{|\zeta|^{2}-s_{1}\left|z_{1}\right|^{2}-s_{2}\left|z_{2}\right|^{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -s_{1} & 0 \\
0 & 0 & -s_{2}
\end{array}\right) \\
Z(x, t)=\left(\begin{array}{c}
\zeta(x, t) \\
z_{1}(x, t) \\
z_{2}(x, t)
\end{array}\right)=\Psi_{0}\left(x, t, \chi^{*}\right) Z_{0}
\end{gathered}
$$

study case : vector NLS equation 3)

$$
\begin{gathered}
\binom{u_{0}^{(1)}(x, t)}{u_{0}^{(2)}(x, t)}=\binom{a_{1} e^{i(q x-\nu t)}}{a_{2} e^{-i(q x+\nu t)}}, \nu=q^{2}+2\left(s_{1} a_{1}^{2}+s_{2} a_{2}^{2}\right), a_{j}>0 \\
\Psi_{0}(x, t, k)=G(x, t) e^{i(\Lambda(k) x-\Omega(k) t)},[\Lambda(k), \Omega(k)]=0 \\
Z(x, t)=G(x, t) e^{i\left(\Lambda\left(\chi^{*}\right) x-\Omega\left(\chi^{*}\right) t\right)} Z_{0} \\
\Lambda(k)=\left(\begin{array}{ccc}
k & -i s_{1} a_{1} & -i s_{2} a_{2} \\
-i a_{1} & -k-q & 0 \\
-i a_{2} & 0 & -k+q
\end{array}\right) \\
P_{\Lambda}(\lambda)=\operatorname{det}[\lambda-\Lambda(k)]=\lambda^{3}+A_{2}(k) \lambda^{2}+A_{1}(k) \lambda+A_{0}(k) \\
\Delta(k)=\operatorname{discriminant} \text { of } P_{\wedge}(\lambda)=k^{4}+D_{3} k^{3}+D_{2} k^{2}+D_{1} k+D_{0}
\end{gathered}
$$

study case : vector NLS equation 4)

classification of rational solutions by computing :
(1) the critical value k_{c}

$$
\Delta\left(k_{c}\right)=0, \quad k_{c} \neq k_{c}^{*}
$$

(2) the similarity matrix T, the Jordan form Λ_{J} and the matrix $\widehat{\Omega}$

$$
\Lambda\left(k_{c}\right)=T \Lambda_{J} T^{-1}, \Omega\left(k_{c}\right)=T \widehat{\Omega} T^{-1},\left[\Lambda_{J}, \widehat{\Omega}\right]=0
$$

(3) the vector

$$
Z(x, t)=G(x, t) T e^{i(\Lambda \jmath x-\widehat{\Omega} t)}\left(\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right)
$$

CLASSIFICATION - 1

Case $\quad\left[\lambda_{1}=\lambda_{2}=\lambda_{3}\right]$

$$
\begin{gathered}
q \neq 0, \quad a_{1}=a_{2}=2 q, \quad s_{1}=s_{2}=-1, \quad k_{c}= \pm i \frac{\sqrt{27}}{2} q \\
\Lambda_{J}=\left(\begin{array}{ccc}
\lambda_{1} & \mu_{1} & 0 \\
0 & \lambda_{1} & \mu_{1} \\
0 & 0 & \lambda_{1}
\end{array}\right), \widehat{\Omega}=\left(\begin{array}{ccc}
\omega_{1} & \rho_{1} & \rho_{2} \\
0 & \omega_{1} & \rho_{1} \\
0 & 0 & \omega_{1}
\end{array}\right) \\
\lambda_{1}=-\frac{k_{c}}{3}, \mu_{1}=2 i q, \omega_{1}=\frac{11}{2} q^{2}, \rho_{1}=4 \sqrt{3} q^{2}, \rho_{2}=4 q^{2} \\
T=\left(\begin{array}{ccc}
\theta & 0 & -i \\
1 & \theta^{*} & i \sqrt{3} \\
i \theta^{*} & i & 0
\end{array}\right), \quad \theta=\frac{1}{2}(-\sqrt{3}+i)
\end{gathered}
$$

CLASSIFICATION - 2

(1) $\gamma_{3}=0$

$$
\binom{u^{(1)}(x, t)}{u^{(2)}(x, t)}=\left(\begin{array}{cc}
e^{i(q x-\nu t)} & 0 \\
0 & e^{-i(q x+\nu t)}
\end{array}\right) \frac{1}{P_{2}}\binom{P_{2}^{(1)}}{P_{2}^{(2)}}
$$

(2) $\gamma_{2}=0$

$$
\binom{u^{(1)}(x, t)}{u^{(2)}(x, t)}=\left(\begin{array}{cc}
e^{i(q x-\nu t)} & 0 \\
0 & e^{-i(q x+\nu t)}
\end{array}\right) \frac{1}{P_{4}}\binom{P_{4}^{(1)}}{P_{4}^{(2)}}
$$

VNLS rational solutions $1\left(\lambda_{1}=\lambda_{2}=\lambda_{3}\right)$

Figure: $k_{c}=i \frac{\sqrt{27}}{2}, s_{1}=s_{2}=-1, q=1, a_{1}=a_{2}=2 ; \gamma_{2}=1, \gamma_{1}=\gamma_{3}=0$.

VNLS rational solutions $2\left(\lambda_{1}=\lambda_{2}=\lambda_{3}\right)$

Figure: $k_{c}=i \frac{\sqrt{27}}{2}, s_{1}=s_{2}=-1, q=1, a_{1}=a_{2}=2, \gamma_{1}=i, \gamma_{2}=0, \gamma_{3}=1$.

CLASSIFICATION - 3

Case $\left[\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right]$

$$
\Lambda_{J}=\left(\begin{array}{ccc}
\lambda_{1} & \mu & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \hat{\Omega}=\left(\begin{array}{ccc}
\omega_{1} & \rho & 0 \\
0 & \omega_{1} & 0 \\
0 & 0 & \omega_{3}
\end{array}\right)
$$

(1) $q=0, s_{1}=s_{2}=-1$ explicit analytical
(2) $q \neq 0, s_{1}=s_{2}, a_{1}=a_{2} \quad$ explicit analytical
(3) $q \neq 0, a_{1} \neq a_{2}$ numerical

VNLS rational solutions $3\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

$q=0, s_{1}=s_{2}=-1 \quad$ vector Peregrine solution

$$
\begin{gathered}
\binom{u^{(1)}(x, t)}{u^{(2)}(x, t)}=e^{2 i \omega t}\left[\frac{L}{B}\binom{a_{1}}{a_{2}}+\frac{M}{B}\binom{a_{2}}{-a_{1}}\right] \\
L=P_{2}+|f|^{2} e^{2 p x}, M=4 f e^{p x+i \omega t} P_{1}, B=\hat{P}_{2}+|f|^{2} e^{2 p x} \\
k_{c}= \pm i p, p=\sqrt{a_{1}^{2}+a_{2}^{2}}, \omega=a_{1}^{2}+a_{2}^{2} \\
\lambda_{1}=\lambda_{2}=0, \lambda_{3}=-i p, \mu=-i p, \omega_{1}=\omega_{2}=p^{2}, \omega_{3}=0, \rho=-2 p^{2} \\
T=\left(\begin{array}{ccc}
-p & p & 0 \\
a_{1} & 0 & a_{2} \\
a_{2} & 0 & -a_{1}
\end{array}\right)
\end{gathered}
$$

VNLS rational solutions $4\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

Figure: $k_{c}=i, q=0, a_{1}=1, a_{2}=0, s_{1}=s_{2}=-1, f=0.1$,

VNLS rational solutions $5\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

Figure: $k_{c}=i \frac{\sqrt{5}}{2},, q=0, a_{1}=1, a_{2}=0.5, s_{1}=s_{2}=-1, f=0.1 i$

VNLS rational solutions $6\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

Figure:
$k_{c}=4.876+5.343 i, q=1, a_{1}=2, a_{2}=5, s_{1}=s_{2}=-1, \gamma_{2}=1, \gamma_{1}=\gamma_{3}=0$

VNLS rational solutions $7\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

Figure:
$k_{c}=-5.600+4.655 i, q=1, a_{1}=2, a_{2}=5, s_{1}=s_{2}=1, \gamma_{2}=1, \gamma_{1}=\gamma_{3}=0$

VNLS rational solutions $8\left(\lambda_{1}=\lambda_{2} \neq \lambda_{3}\right)$

Figure: $k_{c}=-1.242+0.636 i, q=1, a_{1}=2, a_{2}=2, s_{1}=-1, s_{2}=1, \gamma_{2}=$ $1, \gamma_{1}=\gamma_{3}=0$

other integrable equations

3 wave resonant interaction equations :

$$
\left\{\begin{array}{l}
E_{1 t}+V_{1} E_{1 x}=E_{2}^{*} E_{3}^{*} \\
E_{2 t}+V_{2} E_{2 x}=-E_{1}^{*} E_{3}^{*} \\
E_{3 t}+V_{3} E_{3 x}=E_{1}^{*} E_{2}^{*}
\end{array}\right.
$$

Massive Thirring Model equations :

$$
\begin{aligned}
& \left\{\begin{array}{l}
i U_{\xi}-\nu V=\frac{1}{\nu}|V|^{2} U \\
i V_{\eta}-\nu U=\frac{1}{\nu}|U|^{2} V
\end{array}\right. \\
& \partial_{\xi}=\partial_{t}+c \partial_{x}, \partial_{\eta}=\partial_{t}-c \partial_{x}
\end{aligned}
$$

references

E- Baronio F, Degasperis A, Conforti M, Wabnitz S Phys. Rev. Lett., vol. 109; p. 044102-044106 (2012)
R A. Degasperis, S. Lombardo
Phys. Rev. E 88, 052914 (2013)
R. Baronio, M. Conforti, A. Degasperis, S. Lombardo

Phys. Rev. Lett. 111, 114101 (2013)
(in B. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato,
S. Wabnitz

Phys. Rev. Lett. 113, 034101 (2014)
周 A. Degasperis
J. Phys. A: Math. Theor. 48, 235204 (2015)

固 A. Degasperis, S. Wabnitz, A. B. Aceves
Phys. Lett. A 379, 1067-1070 (2015)

